Copied to
clipboard

G = C32:D6order 108 = 22·33

The semidirect product of C32 and D6 acting faithfully

non-abelian, supersoluble, monomial, rational

Aliases: C32:D6, He3:C22, C3:S3:S3, C3.2S32, C32:C6:C2, He3:C2:C2, SmallGroup(108,17)

Series: Derived Chief Lower central Upper central

C1C3He3 — C32:D6
C1C3C32He3C32:C6 — C32:D6
He3 — C32:D6
C1

Generators and relations for C32:D6
 G = < a,b,c,d | a3=b3=c6=d2=1, ab=ba, cac-1=dad=a-1b-1, cbc-1=b-1, bd=db, dcd=c-1 >

Subgroups: 193 in 39 conjugacy classes, 11 normal (5 characteristic)
Quotients: C1, C2, C22, S3, D6, S32, C32:D6
9C2
9C2
9C2
3C3
3C3
6C3
27C22
3S3
3S3
3S3
3S3
6S3
9S3
9S3
9C6
9C6
9C6
2C32
9D6
9D6
9D6
3C3xS3
3C3xS3
3C3xS3
3C3xS3
6C3xS3
3S32
3S32

Character table of C32:D6

 class 12A2B2C3A3B3C3D6A6B6C
 size 199926612181818
ρ111111111111    trivial
ρ211-1-11111-11-1    linear of order 2
ρ31-11-111111-1-1    linear of order 2
ρ41-1-111111-1-11    linear of order 2
ρ52-20022-1-1010    orthogonal lifted from D6
ρ620-202-12-1100    orthogonal lifted from D6
ρ7220022-1-10-10    orthogonal lifted from S3
ρ820202-12-1-100    orthogonal lifted from S3
ρ940004-2-21000    orthogonal lifted from S32
ρ10600-2-3000001    orthogonal faithful
ρ116002-300000-1    orthogonal faithful

Permutation representations of C32:D6
On 9 points - transitive group 9T18
Generators in S9
(1 7 4)(2 5 6)(3 9 8)
(1 3 2)(4 8 6)(5 7 9)
(2 3)(4 5 6 7 8 9)
(4 9)(5 8)(6 7)

G:=sub<Sym(9)| (1,7,4)(2,5,6)(3,9,8), (1,3,2)(4,8,6)(5,7,9), (2,3)(4,5,6,7,8,9), (4,9)(5,8)(6,7)>;

G:=Group( (1,7,4)(2,5,6)(3,9,8), (1,3,2)(4,8,6)(5,7,9), (2,3)(4,5,6,7,8,9), (4,9)(5,8)(6,7) );

G=PermutationGroup([[(1,7,4),(2,5,6),(3,9,8)], [(1,3,2),(4,8,6),(5,7,9)], [(2,3),(4,5,6,7,8,9)], [(4,9),(5,8),(6,7)]])

G:=TransitiveGroup(9,18);

On 18 points - transitive group 18T51
Generators in S18
(1 18 11)(2 8 15)(3 10 13)(4 16 7)(5 14 9)(6 12 17)
(1 5 4)(2 3 6)(7 11 9)(8 10 12)(13 17 15)(14 16 18)
(1 2)(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 2)(3 5)(4 6)(7 8)(9 12)(10 11)(13 16)(14 15)(17 18)

G:=sub<Sym(18)| (1,18,11)(2,8,15)(3,10,13)(4,16,7)(5,14,9)(6,12,17), (1,5,4)(2,3,6)(7,11,9)(8,10,12)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,2)(3,5)(4,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,18)>;

G:=Group( (1,18,11)(2,8,15)(3,10,13)(4,16,7)(5,14,9)(6,12,17), (1,5,4)(2,3,6)(7,11,9)(8,10,12)(13,17,15)(14,16,18), (1,2)(3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,2)(3,5)(4,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,18) );

G=PermutationGroup([[(1,18,11),(2,8,15),(3,10,13),(4,16,7),(5,14,9),(6,12,17)], [(1,5,4),(2,3,6),(7,11,9),(8,10,12),(13,17,15),(14,16,18)], [(1,2),(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,2),(3,5),(4,6),(7,8),(9,12),(10,11),(13,16),(14,15),(17,18)]])

G:=TransitiveGroup(18,51);

On 18 points - transitive group 18T55
Generators in S18
(1 7 10)(2 16 13)(3 18 17)(4 14 15)(5 11 12)(6 9 8)
(1 6 5)(2 3 4)(7 9 11)(8 12 10)(13 17 15)(14 16 18)
(3 4)(5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 2)(3 6)(4 5)(7 15)(8 14)(9 13)(10 18)(11 17)(12 16)

G:=sub<Sym(18)| (1,7,10)(2,16,13)(3,18,17)(4,14,15)(5,11,12)(6,9,8), (1,6,5)(2,3,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,2)(3,6)(4,5)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)>;

G:=Group( (1,7,10)(2,16,13)(3,18,17)(4,14,15)(5,11,12)(6,9,8), (1,6,5)(2,3,4)(7,9,11)(8,12,10)(13,17,15)(14,16,18), (3,4)(5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,2)(3,6)(4,5)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16) );

G=PermutationGroup([[(1,7,10),(2,16,13),(3,18,17),(4,14,15),(5,11,12),(6,9,8)], [(1,6,5),(2,3,4),(7,9,11),(8,12,10),(13,17,15),(14,16,18)], [(3,4),(5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,2),(3,6),(4,5),(7,15),(8,14),(9,13),(10,18),(11,17),(12,16)]])

G:=TransitiveGroup(18,55);

On 18 points - transitive group 18T56
Generators in S18
(1 18 16)(2 10 6)(3 7 5)(4 13 15)(8 17 12)(9 14 11)
(1 7 14)(2 15 8)(3 9 16)(4 17 10)(5 11 18)(6 13 12)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 3)(4 6)(7 9)(10 12)(13 17)(14 16)

G:=sub<Sym(18)| (1,18,16)(2,10,6)(3,7,5)(4,13,15)(8,17,12)(9,14,11), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(13,17)(14,16)>;

G:=Group( (1,18,16)(2,10,6)(3,7,5)(4,13,15)(8,17,12)(9,14,11), (1,7,14)(2,15,8)(3,9,16)(4,17,10)(5,11,18)(6,13,12), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(13,17)(14,16) );

G=PermutationGroup([[(1,18,16),(2,10,6),(3,7,5),(4,13,15),(8,17,12),(9,14,11)], [(1,7,14),(2,15,8),(3,9,16),(4,17,10),(5,11,18),(6,13,12)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,3),(4,6),(7,9),(10,12),(13,17),(14,16)]])

G:=TransitiveGroup(18,56);

On 18 points - transitive group 18T57
Generators in S18
(2 11 16)(3 12 17)(5 13 8)(6 14 9)
(1 15 10)(2 11 16)(3 17 12)(4 7 18)(5 13 8)(6 9 14)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 3)(4 6)(7 9)(10 12)(14 18)(15 17)

G:=sub<Sym(18)| (2,11,16)(3,12,17)(5,13,8)(6,14,9), (1,15,10)(2,11,16)(3,17,12)(4,7,18)(5,13,8)(6,9,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(14,18)(15,17)>;

G:=Group( (2,11,16)(3,12,17)(5,13,8)(6,14,9), (1,15,10)(2,11,16)(3,17,12)(4,7,18)(5,13,8)(6,9,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,3)(4,6)(7,9)(10,12)(14,18)(15,17) );

G=PermutationGroup([[(2,11,16),(3,12,17),(5,13,8),(6,14,9)], [(1,15,10),(2,11,16),(3,17,12),(4,7,18),(5,13,8),(6,9,14)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,3),(4,6),(7,9),(10,12),(14,18),(15,17)]])

G:=TransitiveGroup(18,57);

On 27 points - transitive group 27T29
Generators in S27
(1 21 18)(2 8 5)(3 11 14)(4 12 24)(6 20 23)(7 27 15)(9 26 17)(10 25 19)(13 16 22)
(1 24 27)(2 22 25)(3 26 23)(4 15 21)(5 16 10)(6 11 17)(7 18 12)(8 13 19)(9 20 14)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
(2 3)(4 18)(5 17)(6 16)(7 21)(8 20)(9 19)(10 11)(12 15)(13 14)(22 26)(23 25)

G:=sub<Sym(27)| (1,21,18)(2,8,5)(3,11,14)(4,12,24)(6,20,23)(7,27,15)(9,26,17)(10,25,19)(13,16,22), (1,24,27)(2,22,25)(3,26,23)(4,15,21)(5,16,10)(6,11,17)(7,18,12)(8,13,19)(9,20,14), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (2,3)(4,18)(5,17)(6,16)(7,21)(8,20)(9,19)(10,11)(12,15)(13,14)(22,26)(23,25)>;

G:=Group( (1,21,18)(2,8,5)(3,11,14)(4,12,24)(6,20,23)(7,27,15)(9,26,17)(10,25,19)(13,16,22), (1,24,27)(2,22,25)(3,26,23)(4,15,21)(5,16,10)(6,11,17)(7,18,12)(8,13,19)(9,20,14), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27), (2,3)(4,18)(5,17)(6,16)(7,21)(8,20)(9,19)(10,11)(12,15)(13,14)(22,26)(23,25) );

G=PermutationGroup([[(1,21,18),(2,8,5),(3,11,14),(4,12,24),(6,20,23),(7,27,15),(9,26,17),(10,25,19),(13,16,22)], [(1,24,27),(2,22,25),(3,26,23),(4,15,21),(5,16,10),(6,11,17),(7,18,12),(8,13,19),(9,20,14)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)], [(2,3),(4,18),(5,17),(6,16),(7,21),(8,20),(9,19),(10,11),(12,15),(13,14),(22,26),(23,25)]])

G:=TransitiveGroup(27,29);

C32:D6 is a maximal subgroup of
He3:D4  He3:D6  He3.D6  He3.2D6  He3:5D6  He3:6D6  He3.6D6  C62:5D6  AGL2(F3)
C32:D6 is a maximal quotient of
He3:2Q8  C6.S32  He3:2D4  He3:(C2xC4)  He3:3D4  C32:D18  He3:D6  He3.D6  He3.2D6  He3:5D6  He3:6D6  C62:5D6

Polynomial with Galois group C32:D6 over Q
actionf(x)Disc(f)
9T18x9-3x8-39x7+167x6-24x5-480x4+136x3+384x2+144x+16231·312·76·373

Matrix representation of C32:D6 in GL6(Z)

100000
010000
000100
00-1-100
0000-1-1
000010
,
-1-10000
100000
00-1-100
001000
0000-1-1
000010
,
001000
00-1-100
000010
0000-1-1
100000
-1-10000
,
00-1000
000-100
-100000
0-10000
0000-10
00000-1

G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0],[-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0],[0,0,0,0,1,-1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0],[0,0,-1,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;

C32:D6 in GAP, Magma, Sage, TeX

C_3^2\rtimes D_6
% in TeX

G:=Group("C3^2:D6");
// GroupNames label

G:=SmallGroup(108,17);
// by ID

G=gap.SmallGroup(108,17);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-3,67,483,253,1804,909]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^-1,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32:D6 in TeX
Character table of C32:D6 in TeX

׿
x
:
Z
F
o
wr
Q
<